TwistΒΆ

Type:float
Range:[-inf, inf]
Default:-/-
Appearance:optional
Excludes:AxisPositionX, BlochVector

Specifies the twist \alpha of a straight fiber along the waveguide axis.

The twisted fiber is not invariant in z-direction. Instead, the cross-section material profiles \varepsilon(x, y, 0), \mu(x, y, 0) extend into the three dimensional space by

\begin{eqnarray*}
\varepsilon(x, y, z) & = & \varepsilon(x \cos(\varphi)-y \sin(\varphi), x \sin(\varphi) + y\cos(\varphi), 0),
\end{eqnarray*}

with \varphi = \alpha z, and an analogue definition for the permeability \mu.

In this coordinate system it is only possible to use isotropic material tensors \varepsilon and \mu.

This choice of helicoidal frame is consistent with the literature on twisted microstructured [1] and photonic crystal fibers [2] .

[1]Nicolet, A., Zolla, F., Agha, Y. O., & Guenneau, S. (2007). Leaky modes in twisted microstructured optical fibers. Waves in Random and Complex Media, 17(4), 559-570.
[2]Russell, P. S. J., Beravat, R., & Wong, G. K. L. (2017). Helically twisted photonic crystal fibres. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2087), 20150440.